SEARCH
You are in browse mode. You must login to use MEMORY

   Log in to start

Tarea semana 2 Tx/Rx


🇪🇸
In Spanish
Created:


Public
Created by:
Jonathan Acero


0 / 5  (0 ratings)



» To start learning, click login

1 / 20

[Front]


Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión directa de un enlace: a)Aumentan al aumentar la frecuencia. b)Disminuyen al aumentar la frecuencia. c)No varían con la frecuencia. d)Son infinitas.
[Back]


a)Aumentan al aumentar la frecuencia. Si Disminuimos la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.

Practice Known Questions

Stay up to date with your due questions

Complete 5 questions to enable practice

Exams

Exam: Test your skills

Test your skills in exam mode

Learn New Questions

Dynamic Modes

SmartIntelligent mix of all modes
CustomUse settings to weight dynamic modes

Manual Mode [BETA]

Select your own question and answer types
Specific modes

Learn with flashcards
Complete the sentence
Listening & SpellingSpelling: Type what you hear
multiple choiceMultiple choice mode
SpeakingAnswer with voice
Speaking & ListeningPractice pronunciation
TypingTyping only mode

Tarea semana 2 Tx/Rx - Leaderboard

0 users have completed this course. Be the first!

No users have played this course yet, be the first


Tarea semana 2 Tx/Rx - Details

Levels:

Questions:

20 questions
🇪🇸🇪🇸
Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión directa de un enlace: a)Aumentan al aumentar la frecuencia. b)Disminuyen al aumentar la frecuencia. c)No varían con la frecuencia. d)Son infinitas.
A)Aumentan al aumentar la frecuencia. Si Disminuimos la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas reduce la pérdida de transmisión.
¿Qué afirmación es cierta respecto a la onda de superficie? a)Presenta variaciones entre el día y la noche. b)Permite la propagación más allá del horizonte en las bandas de MF, HF y VHF. c)La polarización horizontal se atenúa mucho más que la vertical. d)El campo lejos de la antena es proporcional a la inversa de la distancia.
C)La polarización horizontal se atenúa mucho más que la vertical La potencia recibida en ambas polarizaciones suele disminuir hasta una cierta altura en que la potencia recibida en polarización vertical permanece constante, mientras que en polarización horizontal continúa disminuyendo.
La atenuación por absorción atmosférica: a)Es constante con la frecuencia. b)Siempre es creciente con la frecuencia. c)Presenta picos de absorción a 22 y 60 GHz. d)Presenta picos de absorción a 15 y 40 GHz.
C)Presenta picos de absorción a 22 y 60 GHz. A 22,3 GHz y 60 GHz aparecen las primeras rayas asociadas al vapor de agua y al oxígeno respectivamente.
¿Cuál es el fenómeno meteorológico que produce una mayor atenuación en la señal en la banda de SHF? a)granizo b)nieve c)niebla d)lluvia
D)lluvia En cuanto a la atenuación por hidrometeoros, es especialmente importante la lluvia, ya que la niebla, la nieve y el granizo producen atenuaciones mucho menores en las bandas de SHF e inferiores.
¿Cuál de las siguientes afirmaciones es falsa? a)La capa D sólo existe de noche y refleja HF. b)capa E refleja de noche MF. c)La capa F1 sólo existe de día y refleja HF. d)La capa F2 refleja de noche HF.
A)La capa D sólo existe de noche y refleja HF. La capa inferior D se extiende entre los 50 y 90 km de altura. Su densidad de ionización aumenta rápidamente con la altura y presenta grandes variaciones entre el día y la noche. De hecho, por la noche prácticamente desaparece, por lo que habitualmente se considera que la capa D es una capa diurna.
El ángulo de incidencia mínimo de una señal de HF en la ionosfera, para que se refleje: a)Disminuye si la frecuencia de la señal aumenta. b)Aumenta si la frecuencia de la señal aumenta. c)Es independiente de la frecuencia. d)Las señales de HFsiempre se reflejan en la ionosfera
B)Aumenta si la frecuencia de la señal aumenta. A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico. Esta variación abrupta produce una reflexión de la onda incidente en la parte baja de la ionosfera
Para una determinada concentración de iones en la ionosfera y a una altura dada, la distancia mínima de cobertura por reflexión ionosférica (zona de silencio) a)Aumenta con la frecuencia. b)Disminuye con la frecuencia. c)Nodepende de la frecuencia. d)Depende de la potencia radiada.
A)Aumenta con la frecuencia. La onda penetra en la ionosfera. La ionosfera es un medio cuyo índice de refracción varía con la altura. La densidad de ionización aumenta con la altura hasta alcanzar el máximo entre los 300 y 500 km. A medida que la densidad de ionización aumenta, el índice de refracción disminuye, produciéndose la refracción de la onda
Una emisora de radiodifusión que emite a una frecuencia de 1 MHz es captada por la noche hasta distancias de 1.000 km. ¿Cuál es el fenómeno de propagación? a)Onda de superficie. b)Reflexión ionosférica en capa E. c)Reflexión ionosférica en capa F. d)Difusión troposférica.
B)Reflexión ionosférica en capa E. La propagación ionosférica presenta desvanecimientos rápidos por modificaciones locales de las condiciones ionosférica. Por otra parte, estos alcances nocturnos extraordinarios están sujetos a interferencias por estaciones próximas al receptor que comparten la misma frecuencia. En estas bandas los parásitos atmosféricos son una fuente importante de ruido.
Cuando una onda de frecuencia inferior a 3 MHz se emite hacia la ionosfera, ¿qué fenómeno no se produce nunca? a)Rotación de la polarización. b)Atenuación. c)Absorción. d)Transmisión hacia el espacio exterior.
D)Transmisión hacia el espacio exterior. A frecuencias bajas y muy bajas (bandas de LF y VLF) la ionosfera supone un cambio brusco en términos de λ del índice de refracción atmosférico. Esta variación abrupta produce una reflexión de la onda incidente en la parte baja de la ionosfera.
Los radioaficionados utilizan en sus comunicaciones satélites en la banda de VHF.¿Qué polarización utilizaría para optimizar la señal recibida? a)Lineal vertical. b)Lineal horizontal. c)Circular. d)Indistintamente cualquiera de las anteriores.
C)Circular. Es por este motivo que en estas bandas es necesario el empleo de polarización circular en las comunicaciones tierra - satélite, ya que el empleo de polarización lineal tendría asociadas pérdidas por desacoplo fluctuantes, impredecibles y con valores potencialmente elevados.
Para una comunicación a 100 MHz entre dos puntos sin visibilidad directa, separados 100 km y situados sobre una Tierra supuestamente esférica y conductora perfecta, las pérdidas por difracción entre los dos puntos: a)Disminuyen al disminuir el radioequivalente de la tierra. b)Disminuyen al aumentar la separación entre los puntos. c)Aumentan al aumentar la altura de las antenas sobre el suelo. d)Aumentan al aumentar la frecuencia.D)Aumentan al aumentar la frecuencia. Como regla general puede afirmarse que para antenas de dimensiones fijas y considerando la propagación en el espacio libre, disminuir la frecuencia en bandas de frecuencias bajas y aumentarla en bandas de frecuencias elevadas tiende a reducir la pérdida de transmisión.
En 1901 Marconi realizó la primera transmisión radioeléctrica transoceánica utilizando una frecuencia de: a)0,8 MHz b)40 MHz c)80 MHz d)400 MHz
A)0,8 MHz Durante el día la propagación se realiza por onda de superficie con coberturas del orden del centenar de kilómetros.
¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a)MF, circular. b)SHF, lineal. c)VHF, lineal. d)UHF, lineal.
B)SHF, lineal. La banda de SHF, está destinada a la difusión de programas de TV por satélite. A frecuencias superiores a 10 GHz, puede emplearse polarización lineal sin que exista una rotación apreciable en la polarización.
¿Qué fenómeno permite establecer comunicaciones transoceánicas en C.B. (banda ciudadana: 27 MHz)? a)Difusión troposférica. b)Refracción en la ionosfera. c)Conductos atmosféricos. d)Reflexión en la luna.
B)Refracción en la ionosfera. La propagación en la ionosfera es la refracción, el efecto global es de reflexión y las ondas electromagnéticas de frecuencias inferiores a unos 30 MHz que inciden sobre la ionosfera desde la tierra son reflejadas hacia ella, permitiendo la comunicación radioeléctrica a grandes distancias.
Una señal de OM es captada a 30 km de la emisora. El mecanismo responsable de la propagación es: a)Reflexión ionosférica. b)Refracción troposférica. c)Onda de espacio. d)Onda de superficie.
D)Onda de superficie. Donde se encuentra ubicado el servicio de radiodifusión en OM. Con potencias de transmisión del orden de 100 kW se obtienen coberturas de hasta unos 100 km con señal de gran calidad (S/N ~ 30 dB) sin necesidad de que exista visibilidad directa entre el transmisor y el receptor.
¿Cuál de las siguientes afirmaciones sobre la fuente importante de ruido en cada banda es incorrecta? a)Ruido atmosférico en 1-10 MHz. b)Ruido industrial en 10-200 MHz. c)Ruido cósmico en 100 MHz-1GHz. d)Absorción molecular de gases atmosféricos en 1-10 GHz
D)Absorción molecular de gases atmosféricos en 1-10 GHz Fuentes extraterrestres. Ruido galáctico debido a la radiación en la banda de radiofrecuencia de las estrellas que forman la galaxia. Radiación de origen solar y el ruido cósmico de fondo.